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Multiple-use management of forests often requires imposition of spatial constraints on the selection of units for
harvest. To satisfy such constraints, harvest units must be treated as integral units. A biased sampling search technique
is used to find integer solutions to operationally sized problems. Solutions found for the sample problems are within
8% of the upper bound of the corresponding linear programming solution and less than 4% below the upper bound
on the true optimum as defined by a confidence interval estimator.
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L’aménagement polyvalent des foréts exige souvent I'imposition de contraintes spatiales portant sur le choix des
unités pour la récolte. Pour satisfaire ces contraintes, les unités de récolte doivent étre traitées comme des unités inté-
grales. Une technique d’échantillonnage par biais a été utilisée pour trouver des solutions intégrées a des problémes
aux dimensions opérationnelles. Les solutions élaborées pour les problémes échantillonnés se trouvent a2 moins de 8%
de la limite supérieure de la solution correspondant a la programmation linéaire et 2 moins de 4% sous la limite supérieure

de I'optimum vrai tel que défini par un estimateur d’intervalle de confiance.

Introduction

Whether a forest is intended for the long-term sustained
vield production of timber in the presence of multiple-use
considerations or as an industrial wood supply, the spatial
relationship of harvest units has a major influence on
effective management. Spatial constraints affect the timing
of harvest of adjacent units of the forest (e.g., a unit cannot
be harvested if an adjacent unit has been harvested in either
the same period or in one or more preceding periods).

Explicit recognition of spatial relationships and the con-
sequent constraints on timber harvest scheduling are impor-
tant for a number of reasons (Bare et al. 1984). First,
management for multiple use often requires that managers
know the geographic location of specific outputs as well as
how much of the output to produce in a given time period.
Of equal concern is the scheduling for harvest of adjacent
units in the same time period, where the combined area of
the two units exceeds the statutory or policy limit on the
maximum size of clear-cuts (Hokans 1983). Typical time lags
range from 4 years in the redwood forests of California to
30-50 years in such forests as the Shoshone National Forest
in Wyoming.

Failure to recognize spatial relationships can also result
in environmental problems. Where a buffer strip is to be
retained, such as around streams, lakes, recreation areas,
roads, or wilderness areas, or where the buffer strip is
necessary for regeneration purposes, the spatial relationship
between the timber scheduled for harvest and the adjacent
stand or feature needs to be recognized.

The spatial relationship between harvest units must be
recognized so that specific wildlife habitat objectives, such

Printed in Canada / Imprimé au Canada

[Traduit par la revue]

as maintenance of adequate degrees of habitat diversity, can
be met. For example, Mealey et al. (1982) state that USDA
National Forest planners are encouraged to establish wildlife
habitat objectives that specify threshold and most desirable
levels of specific proportions of forest age-classes that are
spatially distributed within the geographic area of the forest,
to provide adequate wildlife resources. They further state
that while planning efforts to date have been relatively
successful in providing adequate quantities of needed
habitat, the habitat dispersion necessary for providing cover
and edges has not been very successfully met,

Literature review

Although spatial constraints play a major role in forest
management planning, literature that discusses the incor-
poration of spatial constraints into timber harvest scheduling
is limited. Concern within the USDA Forest Service, for
example, has primarily been with forest-level calculations
of the sustainability of harvest levels over multiple rotations
from a biological standpoint, rather than with the spatial
implications of timber harvesting (Johnson 1981). Such an
approach tends to overstate timber harvest capability when
additional multiple-use objectives with spatial implications,
such as watershed, soil, recreation, visual, and wildlife
resources, must be met (Mealey et al. 1982).

The most widely used technique for timber harvest
scheduling in the United States is linear programming (LP).
One of the earliest models was Timber RAM (resource alloca-
tion model (Navon 1971)). Another widely used LP harvest
scheduling model, developed for even-aged industrial
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forests, was MAXMILLION (Ware and Clutter 1971). No
spatial considerations were included in either model.

In an attempt to deal more effectively with site-specific
environmental questions, the Musyc model of Johnson and
Jones (1979) was developed. However, this model was
basically a more sophisticated timber management model
(Iverson and Alston 1986) in which location-specific issues
could not be easily addressed. The wholesale revision of
MUSYC to FORPLAN created an opportunity for incorporation
of spatial constraints, particularly with Version II (Stuart
and Johnson 1985), although this requires a specific
approach to formulation. .

Armel (1986) noted that one of the most frequently asked
questions by forest managers concerns how the allocations
represented by the standard, stratum-based FORPLAN solu-
tion, in which homogeneous forest units are aggregated, can
be implemented within a heterogeneous area represented by
a given parcel of national forest land. Complications result
from the specific placement and management of habitats
for wildlife such as spotted owls or pileated woodpeckers,
and from the need to consider harvest adjacency constraints,
The standard FORPLAN solution does not consider these
factors. Approaching the problem by means of the ““coor-
dinated allocation choices’ option in FORPLAN Version II
does not lead to a satisfactory solution to this problem,
because resolution of the problem at the harvest-unit level
produces a problem of unmanageable size.

Spatial constraints have been explicitly incorporated into
LP harvest scheduling models (e.g., Mealey et al. (1982) and
Thompson et al. (1973)). However, none of these approaches
led to integer solutions. Jones et al. (1986) examined the
combined transportation network - harvest scheduling
problem with spatial constraints on harvest scheduling, but
did not attempt to solve the harvest scheduling portion of
the problem to an integer solution. Furthermore, units were
individually identified by time period only for the first two
decades of a five-decade analysis, and were aggregated
within the last three periods. Finally, no harvest flow con-
straints were imposed.

Recent studies by Jones and Meneghin (1987),!
Meneghin et al. (1988), and Weintraub et al. (1988)2 also
address the problem of incorporating spatial integrity into
forest planning models. While Jones and Meneghin (1987)!
and Meneghin et al. (1988) are primarily concerned with the
joint transportation - harvest scheduling problem,
Weintraub et al. (1988)2 are concerned with habitat disper-
sion. While the former introduces alternative formulations
aimed at reducing the number of constraints, the latter
focuses on a column-generation technique coupled with a
heuristic approach for solving the associated subproblem.
Sessions and Sessions (1988) recently developed a heuristic
algorithm (sNaP) for solving the combined harvest schedul-
ing - transportation problem in the presence of spatial con-
straints. Their model schedules for up to three periods and

'J.G. Jones and B. Meneghin. 1987. Some spatial relationships
for use in mathematical programming formulations for
simultaneously analyzing forest management and transportation
alternatives. Mimeograph report. USDA Forest Service, Inter-
mountain Research Station, Ogden, UT.

2A. Weintraub, R. Epstein, and F. Barahona. 1988, Integrating
the habitat dispersion problem with timber management planning,
Mimeograph report. Industrial Engineering Department, University
of Chile, Santiago.

accepts capacity limitations on the branches of the road net-
work. However, the model is not designed to solve long-
term multiple-use forest planning problems.

A problem shared by all LP approaches to solving the
spatially constrained timber harvest scheduling problem is
that the solutions found are not integral. Most commonly,
units are split to meet the spatial constraints. In a mathe-
matical sense, the constraints are met, but in practical terms,
field implementation of the solution is not possible unless
the solution is integral.

Integer solutions to the problem were found by Hokans
(1983, 1984), using a discriminant function calculated from
variables used by the manager to define a spatially feasible
harvest schedule for a subunit of the forest, in combination
with a computerized grid-based geographic data base of
stands. The procedure was developed specifically to ensure
that policy limits on clear-cut size were not exceeded.

There are few spatially oriented timber harvest scheduling
models in general use that employ integer programming (IP)
as a solution procedure. Probably the most widely recog-
nized model is that of Kirby et al. (1986). Their integrated
resources planning model (irpm), developed as a mixed-
integer programming formulation, is capable of solving
modest-sized problems (i.e., less than 50 integer variables
and a total of 500 rows and columns), and deals with the
joint transportation — multiple-use planning problem. The
model has been implemented for a variety of national forests
in the western United States at both the forest and subforest
levels of resolution. However, as Jones et al. (1986) report,
the IP solution procedure must be abandoned in favor of
a heuristic algorithm when solving most operationally sized
planning problems,

Bare et al. (1984) used IP as a solution procedure for small
problems in a research context. Solutions were found to
harvest scheduling problems for stands with up to 40 harvest
units over five periods, together with spatial constraints that
required at least a two-period lag between harvests of adja-
cent units. Solution time for such a problem was over 3 h
on a VAX 11.7780.

Bare et al. (1984) also developed a dynamic programming
approach to solve problems of similar size. Although their
formulation was capable of finding the true optimum for
small problems, it required substantial computer storage,
which limited its use to problems involving approximately
50 harvest units over five time periods.

Model development

This paper describes a biased sampling search technique
for the spatially constrained harvest scheduling problem, In
the development of the model, it is presumed that a con-
tiguous planning area has been identified to contain a fixed
number of prespecified harvest units. These units may
assume any geometrical shape, and typically range in size
from less than 6 acres (2.5 ha) to more than 40 acres (16 ha),
Furthermore, it is assumed that no harvest unit can exceed
a maximum specified size. For example, if a policy requires
that the area clear-cut cannot exceed 80 acres (32 ha), no
individual harvest unit can exceed this upper limitation.

The integer (binary) decision variables (X} defined later
may represent clear-cut or partial-cut prescriptions, although
in the sample problems discussed later, only the former are
considered. However, depending upon the severity of
impacts and the resources considered, partial-cut prescrip-
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tions are easily incorporated into the model. As no attempt
is made to treat road-building activities, it is presumed that
all harvest units are available for harvesting each period
unless previously harvested or spatially constrained. Thus,
the model is not intended to solve the joint transportation -
harvest scheduling problem. Instead, its sole purpose is to
solve the harvest scheduling problem in the presence of
spatial constraints. The following notation is used in defining
the model:

Xj = 1if unit j is selected for harvest in period i
0 otherwise

Cj; is the volume of harvest unit j in period /

/; is the lower bound on total harvest volume in
period §

u; is the upper bound on total harvest volume in
period §

I is the number of periods in the planning horizon

J is the number of forest units

S; is the set of all units adjacent to unit j

The basic harvest scheduling problem used in this paper

is a model I formulation (Johnson and Scheurman 1977),
as follows:

maximize
I
L LGy
i=1 j=1
subject to
7
Ecij Xz, i=1,..,1 lower bound
j=1
J
Ecij Xjsu, i=1,.1 upper bound
j=1

N
Y (Xy+ X)) =1, i = i*,.. - (" —i" spatial
i=i constraints

In the spatial constraints, i* denotes the first and i” the
last period for which a given spatial restriction is in force,
i* denotes the number of periods that the restriction
applies, and j' denotes each unit in turn from the set S;.

Because, as is often the case, a unit can be harvested only
once within the planning horizon, the following constraints
are added:

!
YXy=1, j=1..J
i=1
To illustrate the nature of the spatial constraints in terms
o_f this formulation, the equations for imposing the restric-
tion that adjacent units 1 and 2 cannot be harvested unless

there are at least two time periods between harvests are as
follows:

X+ Xy + Xy + X
X+ Xy + Xy + Xy
Xy + Xy + Xy + Xy
X+ X51 + X + Xsn

IA A TA 1A

_A wide variety of spatial restrictions can be modelled using
this formulation. Restrictions on the total number of con-

tiguous acres (hectares) clear-cut are met in two ways. First,
as previously stated, individual harvest units are limited to
some prespecified maximum size. Second, a sufficient time
lag between harvests in adjacent units is imposed so that
openings created by the clear-cutting of a unit can regenerate
to the point at which they are no longer considered open-
ings. By applying such restrictions to all adjacent units that,
if harvested at the same time, would exceed the statutory
or policy limit on total clear-cut size, spatially feasible
harvest plans can be developed. Thus, it is possible to allow
for adjacent units to be harvested in the same time period,
so long as the total area of the opening does not exceed the
policy limit on maximum clear-cut size. However, in the
sample problems discussed later, harvesting adjacent units
(no matter how small or large) is not permitted.

If units selected for harvest are adjacent to buffer strips
around streams, lakes, or recreation areas, an appropriate
time lag is imposed before the buffer unit is eligible for
harvest. Control of visual quality may require a restriction
on the number of periods between harvests of adjacent units,
or the restriction that no more than a maximum number of
units be harvested each period. Forest and wildlife habitat
diversity objectives may be met by ascertaining the age-class
distribution of the forest and imposing time lags between
harvests of adjacent units, so that the age-class distribution
is perpetuated or brought closer to a desirable distribution.

Some multiple-use objectives require modification of the
basic formulation. If units are not to be harvested at all,
they can be excluded from the analysis. Buffer strips are
often retained indefinitely, but may be made available for
harvest following a prescribed number of periods after
harvest of adjacent units.

Although the objective of this formulation is to maximize
total harvest volume, there is no difficulty in modifying the
algorithm to set the objective function as maximization of
net present value. And as demonstrated later, solutions
found under this objective differ little from those found
under volume maximization.

Spatially constrained resource allocation model (SCRAM)

General algorithm

The enormous number of feasible solutions associated
with anything but a very small harvest scheduling model
prompted the abandonment of attempts to find the true
optimum with the use of either IP or an exhaustive direct-
search algorithm. Instead, a heuristic algorithm capable of
finding good, feasible solutions for problems of all sizes was
developed (O’Hara 1987). It was recognized that the spatially
constrained harvest scheduling problem possesses many
characteristics similar to those displayed by assembly line
balancing problems and that both problems involve dif-
ficulties in finding exact solutions (owing to their com-
binatorial nature). This aided in the development of the
heuristic algorithm and led to a solution procedure capable
of solving the spatially constrained harvest scheduling prob-
lem to an integer (not necessarily optimal) solution.

While many assembly line balancing algorithms rely on
characteristics peculiar to a particular problem, Arcus (1966)
and Tonge (1965) describe a general Monte Carlo simulation
approach (i.e., a random search) to obtain good solutions

.to several assembly line balancing problems. Their results

were further improved by prebiasing the random allocation
of tasks to favor tasks considered to be more likely to pro-
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duce a better solution. Arcus (1966) demonstrated that very
good solutions are possible (and were found) if the number
of solutions generated was large.

Random search methods have several advantages, as
noted by Karnopp (1963): ease of programming, simplicity
and low cost of storage and operation, insensitivity to the
type of objective function (especially valuable if the function
is discontinuous), efficiency (in both search procedure and
setup time), flexibility, and the ability to provide informa-
tion about the function being searched and to use that infor-
mation to direct the search. The use of prebiasing is a
relatively simple method for favoring better solutions and
(or) reducing computation times.

One of the characteristics of the set of feasible solutions
to small harvest scheduling problems that suggested that a
random search algorithm might be successful in finding good
feasible solutions is that there appear to be a reasonable
number of solutions that are relatively close to the optimum
solution.

The random search algorithm developed for this problem
generates combinations of units for harvest over the desired
planning horizon, so that both harvest flow and spatial con-
straints are met. The procedure generates 100 feasible com-
binations over all periods and selects the best of these as
the final solution (the reasons for generating 100 feasible
solutions are given later). An estimate of the true optimum
is given, along with a 100(1 — e~ '%)% confidence interval
for the optimum. The program was written in FORTRAN 77
and includes a random number generator from Wichmann
and Hill (1982). A flow chart and listing of the program code
is given by O’Hara (1987).

Data requirements include a matrix of volume and value
by time period for each unit, and for each unit, a list of the
units adjacent to it and the number of periods for which
the corresponding spatial restriction is to apply. Finally,
minimum and maximum harvest levels for each period are
specified. With suitable modification of array size, very large
problems can be processed. There are no restrictions on the
number of periods for which adjacent units must lag between
harvests.

A unit is selected at random for inclusion in the combina-
tion of units for period 1 (prebiasing techniques that modify
this random selection are discussed later). All units adjacent
to the selected unit are flagged for exclusion from considera-
tion, the flag denoting the period at which the unit is again
eligible for inclusion in the harvest. A second unit is selected
at random from the remaining eligible units. This process
continues until the minimum harvest flow constraint is
satisfied.

Generation of a feasible combination of units for the
second period follows. The first step within the new period
is to flag for exclusion any unit with zero volume, and to
remove the flag for exclusion from any unit that has met
the time lag for a spatial restriction imposed by harvest of
an adjacent unit in an earlier period. From this point,
generation of a feasible combination of units for the current
period continues in the same way as described for the first
period.

Processing continues in this manner until a feasible com-
bination of units is generated for each period over the entire
horizon. The total volume (value) of the combination is com-
pared with the incumbent solution. The current solution

replaces the incumbent solution if the total volume (value)
exceeds the incumbent total volume -(value).

After 100 feasible solutions are generated and the best
selected as the final solution, a 100(1 — ¢~ '®)% confi-
dence interval about the optimum is calculated, as described
later. The decision to cease processing after the generation
of 100 feasible solutions is somewhat arbitrary, but was
made on the basis that Arcus (1966) found 100 samples to
be a reasonable size, that Zanakis (1977, 1979a, 1979b)
found that 100 samples gave reasonable estimators for the
confidence interval, and that limits needed to be placed on
utilization of computer resources.

Prebiasing techniques

In addition to a random selection of units, an attempt was
made to produce better solutions by prebiasing the selection
of units to favor units considered more likely to yield good
solutions. Three techniques were used.

As the objective function used in the analysis of the
random search algorithm is volume maximization, the first
prebiasing technique selects units by volume. By replacing
volume by value, prebiasing by value can be used if maxi-
mization of net present value is the objective. To implement
this process, the total volume of all units available for
inclusion is determined. The probability of selecting a given
unit is set equal to the proportion of total volume con-
tributed by that unit. Hence, units with larger voiume have
a greater probability of being selected than units with smaller
volume.

After some experimentation, prebiasing by volume was
applied for the first 3 periods, with no prebiasing used in
later periods for problems over 5 periods, and for the first
7 periods for problems over 9 or 10 periods. The rationale
for this approach was that in attempts to meet harvest flow
constraints, higher volume units are more important early
in the planning horizon, when average unit volume is
relatively low, than later in the planning horizon, when
volume growth enables harvest flow constraints to be met
more easily (i.e., with fewer units). Prebiasing over the full
planning horizon tends to leave only the smallest volume
units in the last period. Because volume growth diminishes
as units age, selection amongst these smaller volume units
in the last period may yield lower total volumes than if selec-
tion is random over the final periods of the planning
horizon. Clearly, these empirically derived conclusions only
apply to the data set and problem definition employed.
However, similar rules of thumb can be easily derived for
other data sets.

The second prebiasing technique biases selection in favor
of units with the fewest effective adjacent units. A unit is
considered to be an effective adjacent unit if selection of
the unit for harvest means that the adjacent unit is added
to the list of units excluded from harvest (i.e., the adjacent
unit is not already on the list). The probability of selection
is the inverse of the number of effective adjacent units.

The third prebiasing technique is a combination of the
first two techniques. Selection is biased in favor of units with
the fewest effective adjacent units, and among the units so
chosen, selection is biased in favor of units with larger
volume.

Confidence interval estimation
The quality of the solution found by a heuristic random
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search algorithm is greatly improved if some estimate is
possible of the proximity of the best solution to the true
optimum. Golden and Alt (1979) propose a very simple
100(1 ~ e ~™% confidence interval on the true optimum,
Zop- For a minimization problem this is written as
Zy2Zpw =22, - b

where b = Z a1 — @, n is the number of solutions in
the sample, parentheses denote rounding down to the next
integer, and & is an estimate of the true minimum (Zop)-
If a random sample of iterative solutions to a large
minimization or maximization problem is ordered, so that
the smallest is set as Z, (for a maximization problem, the
largest solution is made the smallest by multiplying by — 1),
. then using a procedure described by Cooke (1979), Zyp is
estimated as

n
d=2Z - (-1 Zz,-/e"
i=1
This estimator was developed from the empirical distribution
function for the set of ordered solutions Zy,...,Z, without
making any assumptions about the distribution of the solu-
tions. The estimator applies to any distribution with a loca-
tion or threshold parameter (Zanakis and Evans 1981).

The confidence interval estimator requires that the ran-
dom sample of ordered solutions come from a three-
parameter Weibull cumulative distribution:

F(Z)=1-¢l"l@Z-atl} 75 4

with parameters & (location), b (scale), and ¢ (shape)
(Zanakis and Evans 1981). Golden and Alt (1979) note that
the assumption is derived from a proof by Fisher and Tippett
(1928) that for S independent samples, each of size m, from
a parent population that is bounded from below by a, the
distribution of the smallest value in each sample approaches
a Weibull distribution with « as the location parameter as
m gets large. The estimator is then derived from the obser-
vation that the cumulative distribution function of the sum
of the location and scale parameters equals 1 — e~ ! or
approximately 0.63. Using this fact, the confidence inter-
val can be derived by a simple manipulation of a probability
- expression and the cumulative distribution function of the
Weibull distribution. The estimator was tested with a variety
of travelling salesman problems and found to perform
efficiently.

Golden and Alt (1979) recommend refining this confi-
dence interval by using maximum likelihood estimates, but
Zanakis and Evans (1981) claim that the added accuracy
does not justify the incremental effort and that the
estimators given earlier should suffice for most simple
heuristic optimization methods.

Daita

Data for our tests are drawn primarily from the study by
Jones et al. (1986). These data cover 242 units over five

10-year time periods and are from the Twin Rocks section -

of the Lolo National Forest in western Montana. The harvest
units are delineated on the basis of relative uniformity of
Species, age, and condition, in combination with geographic
boundaries, and range in size from 6 to 40 acres (2.5-16 ha)
(40 acres is the maximum clear-cut size). Volume and value
by unit and period are known, with value recorded in cons-

tant 1982 dollars and future prices calculated assuming a
growth in real prices of 2% per year.

As no harvest flow constraints were included in the study
by Jones et al. (1986), a variation of SCRAM, which ensures
that all feasible units are harvested, is used to establish lower
bounds on harvest volume under a given set of spatial con-
straints. With this estimate as a starting point, the lower
bound on harvest volume for a period is set at the maximum
level for which 100 feasible solutions are found within
15 min of central processing unit (CPU) time on a VAX 8700.
Different trials are run in increments of 1000 board ft
(1 board ft = 2.360 dm?) to aid in this determination. The
uppcr bound is arbitrarily set 1000 board ft higher for the
242-unit problem. The width of the bounds is of the order
of 5-10% of the lower bound. As SCRAM adds units to the
harvest in a period only until the lower bound is met, and
then adds units to the harvest in the next period, the flow
constraints are set no wider than is necessary to avoid, on
average, excluding a unit from being harvested because the
volume is so large that adding it to the current combination
of units will cause the upper harvest bound to be exceeded.
For ease of application and interpretation, harvest flow con-
straints are kept constant over the planning horizon,
although scraM does not require this.

While there is nothing inherent in ScraM that requires
that a harvest unit can only be harvested once during the
planning horizon, this constraint was added to the sample
problems discussed later. Similarly, the only silvicultural
prescription incorporated into the sample data set involves
a final clear-cut. Again, SCRAM permits other silvicultural
prescriptions if problem definition dictates this.

Results

In analyses with the scRaM model, problems covering
25 units over five periods with a three-period lag between
harvest of adjacent units are also reported. These were
selected because they could always be solved by complete
enumeration and, hence, provide a convenient benchmark
for comparison.

Results using SCRAM with the Jones et al. (1986) data set
are given in Table 1. Interpretation of the percent increase
to the upper bound of the confidence interval and to the
LP optimum requires some explanation. The upper bound
of the confidence interval is a sample-based estimate of the
maximum amount by which the true optimum differs from
the best solution found, with essentially 100% probability.
Because the estimators for the confidence interval are sample
based, a solution with a narrower confidence interval is not
necessarily better than one with a wider confidence inter-
val. To reinforce confidence in the performance of the
algorithm, the percent difference between the best solution
found and the LP optimum, which is the absolute upper
bound on the solution, is also tabulated. The LP optimum
is obtained by excluding the requirement that Xj; be integer
(binary) variables. Otherwise, the problem formulation
remains unchanged.

For the 25-unit problem, prebiasing by volume yields the
fastest solution. The best solution, which was actually the
optimum, was found by prebiasing by the effective number
of adjacent units. This procedure took about 140% longer
than the next slowest procedure. The procedure using no
prebiasing produced the lowest solution, 2.44% less than
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TABLE 1. SCRAM with the data set from Jones et al. (1986)

% to
Best upper bound®
solution Value cpu?
Data“ Prebiasing” (10® bd ft) ($1000) | 2 (s)
25/5/73
115071600 Direct search 6 961 2930 Irrelevant 14,93 124.7
None 6 795 2918 7.7% 17.73 288.1
: (—2.44)
Volume 6 858 2910 8.57 16.65 192.6
(—-1.50)
Adjacent 6 961 2930 10.05 14.93 733.3
(0.00)
Adjacent/volume -6 890 2 886 7.22 16.11 397.8
(—-1.03)
242/5/1
16 000 / 17 000 None 82 325 34 744 1.66 3.25 89.0
Volume 82 074 34 511 1.40 3.57 256.4
Adjacent 82 161 34 571 na 3.46 + +16
Adjacent/volume 81 473 34 462 na 4.33 + +14
242/5/3
8500/9500 None 44 557 18 846 2.41 6.61 428.2
Volume 45 015 18 899 3.29 5.52 92.2
Adjacent 45 089 19 097 3.46 5.35 700.0
Adjacent/volume 44 859 19 038 3.17 5.89 192.2
. 242/5/V
10 500 / 11 500 None 54 419 23 245 1.77 5.66 248.4
Volume 54 601 23 180 2.09 5.31 133.4
Adjacent 54 460 23123 na 5.58 + +54
Adjacent/volume 54 554 23 146 na 5.40 + +85

2vvv/w/x: vy is number of units; w is number of periods; x is number of periods for which spatial restriction applies,
where V denotes variable from 1 10 4, selected at random before construction of data set. Yyyyy/z22zz: yyyyy is lower
bound on harvest flow (Mbf); zzzzz is upper bound on harvest flow (Mbf).

®Direct search, uses direct search algorithm employing complete enumeration; none, no prebiasing used; volume,
prebiasing by volume for first three periods, no prebiasing for later periods; adjacent, prebiasing by effective number
of adjacent units for first three periods for one-period spatial restrictions and all periods for other spatial restrictions;
adjacent/volume, prebiasing by effective number of adjacent units and then by volume for first three periods for one-
and five-period spatial restrictions and all periods for three-period spatial restrictions.

“Percentage to upper bound has two entries: (1) the percentage difference between the best solution found and the
upper bound of the 100(1 — e ~")% confidence interval; (2) the percentage difference between the best solution found
and the LP optimal solution. For the 25-unit data set, the percent difference between the best solution found and the
true optimum is given in parentheses in the best solution data column.

4CPU s on a VAX 8700. If entered as + +nn, the algorithm failed to generate 100 feasible sotutions within 15 min
of CPU time. When this occurred, no estimate could be made of the optimum or the confidence interval. Hence, these
are tabulated as na (not available). The number nn after + + is the number of solutions found within 900 CPU s.

the true optimum. However, the value of the solution was
close to the best found by scRAM with any other procedure.

The 100(1 — e ~")% confidence interval appears to be
quite conservative for the small data set, as would be
expected for such a high probability. The confidence inter-
val contains the true optimum in all cases, and the upper
bound on the confidence interval exceeds the true optimum
by at least 5% in all cases.

The performance of scRaM using each prebiasing tech-
nique with the larger data sets varies with the restrictiveness
of the spatial restrictions. SCRAM without prebiasing yields
the best solution when only a one-period lag between
harvests is imposed, and does so more than 280% faster than
the next fastest procedure, which is prebiasing by volume.
The percent increase for the confidence interval indicates
that the solution found is within 1.66% of this upper bound
on the true optimum with (essentially) 100% probability.
Given the limited spatial restriction, it is not surprising that
the procedures that used the effective number of adjacent

units require considerably more computation time than the
other procedures.

For the more restrictive data set, in which a three-period
lag is imposed, prebiasing by the effective number of
adjacent units yields the highest overall solution (no more
than 3.46% below the estimated upper bound on the true
optimum). Prebiasing by volume is the fastest procedure
with this data set and yields the second highest solution. The
improvement in performance of prebiasing by effective
number of adjacent units and then by volume compared with
results with the less restrictive data set is considerable, and
indicates that the motivation for the prebiasing technique
is well-founded for certain types of problem.

Prebiasing by volume also produces the best solution with
the fastest computation time for the data set in which the
periods for spatial restrictions are variable. It produces a
solution slightly higher than searching with no prebiasing,
but approximately 85% faster. The solution is no more than

" 2.09% below the estimated upper bound on the true opti-
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TABLE 2. SCRAM with the data set from Jones et al. (1986) and rotation harvest flow control

%% to
upper bound
solution®  Value CPU
Data Prebiasing (10° bd ft) ($1000) 1 2 (s)
1 25/5/3 .
1000/1600 Direct search 6 983 2924 Irrelevant 14.56 672.0

None 6 499 2 788 11.48 23.10 10.2
(—7.45)
Volume 6 538 2 794 12.63 22.36 8.4
(—6.81)
Adjacent 6 577 2795 14.00 21.64 29.1
(—-6.17) b
Adjacent/volume 6516 2 796 11.79 22.77 18.6
(-7.17)
242/5/1
10 000 / 11 000 None 52 554 22172 2.73 4.65 15.4
Volume 52 377 22 136 2.28 5.01 234
Adjacent 52 485 22 061 2.48 4.79 71.6
Adjacent/volume 52 405 22 225 2.49 4.95 64.9
242/5/3
8000/9000 None 42 184 17 887 2.69 6.68 34.6
Volume 42 380 17 946 2.97 6.18 29.4
Adjacent 41 998 17 880 2.21 7.15 135.4
Adjacent/volume 42 669 17 800 3.65 5.46 71.1
242/5/V
9000/ 10000 None 47 237 19 826 2.42 5.85 15.2
Volume 47 886 20 322 3.67 4.41 20.5
Adjacent 47 669 20 195 3.26 4.89 68.6
Adjacent/volume 47 433 20014 2.62 5.41 60.4

Note: For an explanation of parameters and codes used, see Table 1.

mum. Although neither of the techniques using prebiasing
by effective number of adjacent units produces 100 feasible
solutions, the best solutions found are of high quality. Of
course, only one solution is necessary if it is better than any
other, although a confidence interval cannot be estimated
for that case.

Solution times are relatively lengthy for the Jones et al.
(1986) data set under harvest flow constraints that attempt
to harvest close to the maximum available volume over the
planning horizon. Such a scenario is not often used in
practice, because attempts to meet sustained yield require-
ments necessitate retention of potential harvest volume over
a longer time horizon. To model such a situation, volume
and value for the Jones et al. (1986) data set are projected
over a nine-period (90-year) rotation. For this planning
horizon, harvest flow constraints are set to harvest the
maximum available volume, subject to the spatial con-
straints. The harvest flow constraints so determined are then
applied to the original Jones data set. It is expected that these
lower (and thus more easily met) harvest flow constraints
will considerably improve the solution times. Results of this
analysis are given in Table 2.

It is immediately obvious that the supposition that solu- :

tion times will be dramatically improved for less restrictive
harvest flow constraints is valid. The harvest flow constraints
for the three-period and variable-period spatial restrictions
are reduced by only 5.9 and 5.0%, respectively, but the solu-
tion times improve by factors of 3.14 and 6.51%, respec-
llv‘ciy, for the fastest techniques with these data sets and the
original harvest flow constraints (see Table 1).

The other obvious difference between these results and
those obtained with the original harvest flow constraints is
that differences in solution times for different procedures
are less dramatic. There is far less reason to consider a
procedure to be at all deficient as a result of a markedly
longer solution time. For practical application, this has two
important advantages. First, more than one prebiasing
technique can be used to obtain different solutions and
perhaps increase the likelihood of finding a particularly good
solution. Second, a larger number of feasible solutions can
be found by a procedure without prohibitive use of com-
puting resources, further increasing the chances of finding
a better solution with any one procedure.

Discussion

General comments

SCRAM gives managers the first model capable of finding
good, feasible integer solutions to timber harvest scheduling
problems in the presence of spatial constraints for large
numbers of units over a planning horizon. Before the
development of this model, such scheduling was done
manually, with a considerable manpower requirement and
the ever-present risk of infeasibility.

SCRAM uses data that are available for any harvest
scheduling operation. Hence, there are no special data
requirements. The model can process schedules with spatial
constraints in any combination desired by the user (assuming
a feasible solution is possible), limited only by the require-
ment that a reasonable number of feasible solutions exist.
This implies that the harvest flow constraints are not exces-
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sively restrictive when considered with the spatial con-
straints. Moreover, estimates of confidence intervals for the
optimum suggest that the best solutions found for large
problems are all within 4% of the true optimum, with essen-
tially 100% probability. Even assuming the worst case of
the upper bound on the true optimum being the LP opti-
mum, all solutions to large problems with moderate planning
horizons are within 8% of this upper bound.

Units selected for harvest by the model are relatively
randomly scattered throughout the forest. Such a result may
be undesirable if close control over harvests is desired, as
evidenced by the geographical confinement of harvesting
operations. This scenario can be modelled by only consider-
ing for selection those units that are within the defined
geographical area. However, this will require definition of
harvest flow constraints for that area, and may lead to dif-
ficulties in meeting the spatial constraints over the forest
as a whole, because the algorithm only considers the spatial
relationship within the list of units being considered for
selection.

The definition of ““period’’ in the model has been left
deliberately vague. Although one period equalled one decade
for most data sets in this study, there is no intrinsic require-
ment in the model for such a period length. The length of
a period is thus entirely at the discretion of the user. For
example, if the only spatial restriction imposed was the
requirement that the harvests of adjacent units be no closer
than 3 years apart, the harvest schedule would be modelled
with this algorithm by setting the period equal to 5 years
and the spatial restriction equal to one period, and then
running the model for the desired number of 5-year periods
to meet the planning horizon. The only requirements are
that the periods be of constant length and that the spatial
constraints apply for integer multiples of the period length.

Unless the spatial restrictions are imposed for only one
- period, unharvested units will always remain at the end of
the planning horizon (unharvested units may remain with
a one period restriction, depending on how difficult it is to
meet the harvest flow constraints). These unharvested units
are the units adjacent to units harvested closer to the end
of the planning horizon than the length of the spatial con-
straint, together with units not required to meet the harvest
flow constraints. No provision is made for ensuring that suf-
ficient units remain to meet sustained yield requirements
beyond the end of the planning horizon. The number of
units remaining is obviously variable. Hence, several runs
of the model may be necessary to balance the number of
units made available for harvest within the planning horizon
with the number that must be retained to meet sustained
yield volume requirements. Alternatively, the model can be
run for a full rotation, although even then, spatial con-
straints may prevent the harvest of all units within the period
of the rotation.

Significance of the harvest flow constraints

Harvest flow constraints have a significant influence on
the operation of scrRaM. Recall that the algorithm passes on
to selection for the next period as soon as the lower bound
on the harvest flow is exceeded for the current period. Thus,
it can be argued that the lower bound penalizes the algorithm
and leads to dominated solutions, because a better solution
may be found by increasing the lower bound and leaving
the upper bound unchanged. One approach for problems

with loose lower bounds is to increase the lower bound by
10% increments and run the modél for each new set of
harvest flow constraints, until either no solutions can be
found within what is considered a reasonable amount of
computatxon time, or the lower bound on harvest flow has
reached the highest acceptable level.

Prebiasing techniques

Particular types of problems respond to different forms
of prebiasing (or no prebiasing at all) in characteristic ways.
These results suggest that prebiasing by various methods
should be used for certain problems, but random search
without prebiasing performs best for other types of prob-
lems. Lastly, ScrRaM (with or without prebiasing) yields solu-
tions that are essentially equally good for many problems.
However, thoughtful selection of which, if any, prebiasing
technique should be used, and for what number of periods,
can substantially reduce the computation tinmie necessary for
finding a good solution.

SCRAM without prebiasing is usually faster than any form
of prebiasing when the harvest flow constraints are not very
restrictive. Tables 1 and 2 show that for problems in which
the spatial restrictions apply for only one period, random
search without prebiasing is significantly faster than any
prebiasing technique, and also yields the best or second-best
solution for either data set (although the latter result may
be at least partly due to chance). The reason for this is that
imposition of a one-period lag between harvest of adjacent
units Jeaves a large number of units available for selection
for harvest in any period. Hence, it is not as important to
select the ‘‘best”” units for inclusion in a particular period
in the harvest schedule.

Prebiasing by volume, effective number of adjacent units,
or a combination of the two becomes more efficient under
more restrictive spatial constraints. Prebiasing by volume
yields 100 feasible solutions substantially more quickly than
any other technique when a three-period spatial restriction
is imposed, and yields the second-best solution for both
analyses. Both the other prebiasing techniques work very
well under the same constraint, although both require con-
siderably more computation time than prebiasing by volume.
The effectiveness of the prebiasing techniques under this
constraint is not surprising, because the more restrictive
situation favors techniques that facilitate the search for the
“‘best’’ solution.

For the intermediate situation, in which the spatial con-
straints are moderately restrictive, no one technique is
superior. Random search without prebiasing or with prebias-
ing by volume produces solutions significantly more quickly
than prebiasing by either of the other techniques. However,
even in the situation in which prebiasing by effective number
of adjacent units produced only 54 solutions in 900 s of CPU
time, the best solution found is better than that found by
random search without prebiasing in 248.4 s of CPU time.
Hence, CPU time alone does not provide a good measure
of the quality of a procedure.

In general, prebiasing by volume yields solutions more
quickly than any other technique for problems in which the
spatial restriction is greater than a one-period lag. In doing
this, the best solution found is usually either the best or
second-best solution found by any technique. Random
search without prebiasing is fastest and best or second best
for all problems over planning horizons of five periods with
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a one-period spatial constraint. The remaining techniques
produce solutions that differ relatively little in quality but
usually require considerably greater amounts of computer
time.

Confidence interval on the true optimum

Results obtained with the estimator for the 100(1 —
e "% confidence interval suggest that the confidence
interval is likely to include the true optimum in many cases.
Furthermore, even in the worst case of the upper bound on
the SCRAM solution being the LP optimum, the largest dif-
ference between a solution found by the random search pro-
cedures for large problems and the LP optimum is 7.15%;
the usual difference is of the order of 4-6%.

A difference of at most 7.15% (more reasonably, less than
6%) between the best solution found and the LP optimum
solution can be considcred negligible. First, because the true
(unknown) optimum is less than or equal to the LP opti-
mum, we can be confident that a good, feasible solution has
been obtained. Secondly, it raises the question of whether
additional computing resources should be devoted to com-
puting an even better solution. And thirdly, it must be
recognized that when the solution is implemented in an
operational setting, other sources of uncertainty will
dominate, making it extremely unlikely that model-based
timber volumes (values) will be realized. Such a conclusion
is reinforced by the knowledge that solutions closer to the
LP optimum are likely to be found if the approach described
earlier for actual use of scram is followed. For practical
purposes, solutions found by sCRAM can be said to be
satisfactorily close to the true optimum.

Conclusions

The problem of incorporating spatial constraints into the
timber harvest scheduling problem can be expressed in a
generalized mathematical formulation. With this formula-
tion, explicit recognition is given to constraints on the spatial
relationships between harvesting units. A wide variety of
such constraints, drawn from multiple-use objectives, can
be successfully represented via this formulation.

SCRAM uses a random search algorithm to find good,
feasible solutions to operationally sized problems with a
variety of spatial constraints, and is the first model capable
of finding good, feasible integer solutions to such timber
harvest scheduling problems. Furthermore, scraM, unlike
IP, always finds feasible solutions. SCRAM also appears to
yield solutions that are stable in terms of accuracy as prob-
lem size increases. The size of a problem for which a solution
can be found has not been determined, but the algorithm
requires only modification of array dimensions to deal with
much larger problems. No difficulty is expected in produc-
ing solutions to problems covering several thousand units,
such as may be encountered in practice.

If value rather than volume maximization is desired, the
algorithm can be easily modified to meet that objective.
Solutions found under this objective differed little from
those found under volume maximization for the data sets
examined.

In short, SCRAM, appears to be immediately applicable to
field use for developing harvest schedules for areas in which
the road pattern has been built and only temporary logging
roads are needed for timber harvest. The harvest schedules
generated will meet harvest flow constraints, are high in

volume (value), and are feasible in the field for direct iden-
tification of a harvesting pattern that meets spatial restric-
tions on the harvest of units of the forest.

. SCRAM can be used to schedule cultural treatments such
as shelterwood harvests, heavy thinnings, and spraying for
pest control. The necessary condition for using the model
is that the treatment be applied to the unit as a whole at
one time. The spatial constraints on such treatments are not
as evident as for clear-cut harvesting, but may be relevant
in certain situations.

The general approach developed in this study for schedul-
ing harvests over time, subject to specific constraints, can
also be applied to the problem of developing sequences of
treatments to be applied to a unit over a planning horizon.
A series of schedules for each unit can be developed, then
selected by a model similar to scraM, and examined for
feasibility, subject to specific constraints. The spatial rela-
tionships of such treatments over time may be of interest
to management.

Another important assumption to recall is that roads to
service the harvest units are presumed built. For second-
growth forests that have already been roaded, this may not
be a severe deficiency. However, if the road network has
not been built, the harvest schedule will be heavily influenced
by the cost of building the roads and the timing of construc-
tion. The joint solution of the harvest scheduling problem
in the presence of spatial constraints and the road network
planning problem is a task of considerable complexity and
is an important area for future research in this branch of
forest management planning.
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